JEE MAIN SEP 2020 (MEMORY BASED) | 4 ${ }^{\text {th }}$ Sep. SHIFT-2

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. How does a synthetic drug Terfenadine (seldane) work as antihistamine.
(1) Increases stimulation of Histamine
(2) It is a drug that binds to receptor site and inhibit its natural function.
(3) Increases reactivity of Histamine
(4) It is a drug that mimics the natural messenger by switching on the receptor

Ans. (2)
Sol. Seldane act as antihistamine and interfere with the natural action of histamine by competing with histamine for binding sites of receptor.
2. What will be the final product of following reaction sequence?

Ans. (2)

Sol.

3. Identify end product of following reaction sequence

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

Final product.
4. Which of the following complex show maximum paramagnetism?
$\left[\mathrm{PPh}_{3}=\right.$ triphenyl phosphine, $\mathrm{ox}^{2-}=$ oxalato, gly $=$ glycinato $]$
(1) $\left[\mathrm{Co}(\mathrm{ox})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-}$
(2) $\left[\mathrm{Fe} \text { (en) (bipy) }\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
(3) $\left[\mathrm{Pd} \text { (gly) }\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$
(4) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{3+}$

Ans. (4)
Sol.

Electronic configuration

No. of unpaired e^{-}
(1) $\left[\mathrm{Co}(\mathrm{ox})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-}$
$\mathrm{Co}^{3+}=3 \mathrm{~d}^{6} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{6}, \mathrm{e}_{\mathrm{g}}{ }^{0} \quad 0$
(2) $\left[\mathrm{Fe}(\text { en }) \text { (bipy) }\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
$\mathrm{Fe}^{2+}=3 \mathrm{~d}^{6} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{6}, \mathrm{e}_{\mathrm{g}}{ }^{0}$
(3) $\left[\mathrm{Pd}(\mathrm{gly})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$
$\mathrm{Pd}^{2+}=4 \mathrm{~d}^{8} \Rightarrow \mathrm{~d}_{\mathrm{yz}}^{2}, \mathrm{~d}_{\mathrm{zx}}^{2}, \mathrm{~d}_{\mathrm{z}^{2}}^{2}, \mathrm{~d}_{\mathrm{xy}}^{2}, \mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}^{0}$
(4) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\mathrm{Ti}^{3+}=3 \mathrm{~d}^{1} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{1}, \mathrm{e}_{\mathrm{g}}{ }^{0}$
1
5. In hydrogen spectrum shortest wavelength for Lyman series line is λ, then find longest wavelength of Balmer series line in He^{+}ion spectrum.
(1) λ
(2) $\frac{9}{5} \lambda$
(3) $\frac{5}{9} \lambda$
(4) $\frac{4}{9} \lambda$

Ans. (2)

Sol. For hydrogen atom :
For Lyman series $\mathrm{n}_{1}=1 \& \mathrm{n}_{2}=\infty$

$$
\frac{1}{\lambda_{\mathrm{H}}}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{1}-\frac{1}{\infty}\right] \text { So, } \lambda=\frac{1}{\mathrm{R}_{\mathrm{H}}}
$$

For He^{+}ion
Balmer series $\mathrm{n}_{1}=2 \& \mathrm{n}_{2}=3$
$\frac{1}{\lambda_{\text {He }^{+}}} \mathrm{R}_{\mathrm{H}} \times \mathrm{Z}^{2}\left[\frac{1}{4}-\frac{1}{9}\right]$
$\frac{1}{\lambda_{\text {He }^{+}}}=\mathrm{R}_{\mathrm{H}} \times 4 \times \frac{5}{36}$
$\frac{1}{\lambda_{\text {He }^{+}}}=\frac{5}{9} \mathrm{R}_{\mathrm{H}}=\left(\frac{5}{9}\right) \frac{1}{\lambda}$
$\left(\lambda_{\mathrm{He}^{+}}\right)=\frac{9}{5} \lambda$
6. An alkaline earth metal sulphate is soluble in water while its hydroxide is not soluble in water and its oxide does not form rock salt structure, then metal is
(1) Be
(2) Mg
(3) Ca
(4) Sr

Sol. $\quad \mathrm{BeSO}_{4}$
Soluble in water
$\mathrm{Be}(\mathrm{OH})_{2} \quad$ Insoluble in water
Structure of BeO is Hexagonal Wurtzite.
7. Calculate CFSE for complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{~F}_{3}\right]\left[\right.$ Given $\left.\Delta_{0}<\mathrm{P}\right]$
(1) $-0.8 \Delta_{0}$
(2) $-0.4 \Delta_{0}$
(3) $-1.2 \Delta_{0}$
(4) $-2.4 \Delta_{0}$

Ans. (4)
Sol. $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{~F}_{3}\right] \mathrm{Co}^{3+}=3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{2,1,1}$, $\mathrm{eg}^{1,1}$

$$
\begin{aligned}
\mathrm{CFSE} & =\left[-0.4 \mathrm{nt}_{2 \mathrm{~g}}+0.6 \mathrm{n}_{\mathrm{eg}}\right] \Delta_{0} \\
& =[-0.4 \times 4+0.6 \times 2] \Delta_{0} \\
& =-0.4 \Delta_{0}
\end{aligned}
$$

8. 100 ml solution of each 0.1 M AuCl and 0.1 M AgCl is electrolysed by passing 1 amp current for 15 minute, then which of the following will be deposited at electrode?
$\left[\right.$ Given $\left.\mathrm{Au}^{+}(\mathrm{aqs})+\mathrm{e}^{-} \rightarrow \mathrm{Au} \mathrm{E}^{0}=1.69 \mathrm{~V}\right]$

$$
\left[\mathrm{Ag}^{+}(\mathrm{aqs})+\mathrm{e}^{-} \rightarrow \mathrm{Ag} \mathrm{E}^{0}=0.80 \mathrm{~V}\right]
$$

(1) Only Au
(2) Only Ag
(3) Both Au and Ag
(4) None of Au and Ag

Ans. (1)
Sol. \quad Charge $(q)=\frac{\text { it }}{96500}=\frac{1 \times 15 \times 60}{96500}=\frac{900}{96500}=\frac{9}{965}=\mathrm{F}=0.0093 \mathrm{~F}$
No. of moles of $\mathrm{Au}^{+}=0.01 \&$ No. of moles of $\mathrm{Ag}^{+}=0.01$
Species with higher value of SRP will get deposited first at cathode.
Au^{+}(aq.) $+\mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$
as 0.0093 mole of electrons are present therefore, 0.0093 moles will be deposited out of 0.01 moles for Au
9. In which of the following reaction, Hybridisation of underline atom gets changed
(1) $\underline{\mathrm{X}}_{\mathrm{eF}}^{4}+\mathrm{SbF} \mathrm{S}_{5} \longrightarrow$
(2) $\mathrm{H}_{3} \mathrm{PO}_{2} \xrightarrow{\text { disproportionation }}$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaCl} \longrightarrow$
(4) $\mathrm{NH}_{3}+\mathrm{BF}_{3} \longrightarrow$

Ans. (1)
Sol. (1) $\mathrm{XeF}_{4}+\mathrm{SbF}_{5} \longrightarrow\left[\mathrm{XeF}_{3}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$ $\mathrm{sp}^{3} \mathrm{~d}^{2} \quad \mathrm{sp}^{3} \mathrm{~d}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{2} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$ $\mathrm{sp}^{3} \quad \mathrm{sp}^{3}$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaCl} \longrightarrow \mathrm{NaHSO}_{4}+2 \mathrm{HCl}$

(4)

10. In colloidal solution of blue ink which of the following reagent is mixed to stablise it $\mathrm{H}_{2} \mathrm{O}, \mathrm{Egg}, \mathrm{CH}_{3} \mathrm{COOH}$ and HCl
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) Egg albumin
(3) $\mathrm{CH}_{3} \mathrm{COOH}$
(4) HCl

Ans. (2)
Sol. Blue ink is a colloidal sol, so it can be stabilised by material like protein / natural gum / egg albumin.
11. If temperature changes from $27^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$ then no. of molecule having energy greater than threshold energy become five times, then find activation energy (Ea) of reaction (in kJ)
[Given $\ln 5=1.6094 \& R=8.314 \frac{\mathrm{~J}}{\text { Mole } \times \mathrm{k}}$]
Ans. $\quad 84.30 \mathrm{~kJ}$
Sol. $\mathrm{k}=\mathrm{Ae}^{-} \frac{\mathrm{Ea}}{\mathrm{RT}}$
$\ln \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\ln (5)=\frac{\mathrm{Ea}}{8.314}\left[\frac{1}{300}-\frac{1}{315}\right]$
$1.6094=\frac{\mathrm{Ea}}{8.314}\left[\frac{15}{300 \times 315}\right]$
$\mathrm{Ea}=84297.55$
$=84.2975 \mathrm{~kJ}$
$=84.30 \mathrm{~kJ}$
12. In $100 \mathrm{~mL}, 0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ solution. Mass of solute is 1.43 gram, then value of X is:

Ans. (10.00)
Sol. \quad Equivalent of solute $(\mathrm{e})=0.1 \times 0.1$
$\mathrm{e}=\mathrm{n} \times \mathrm{n}_{\mathrm{f}} \quad \mathrm{n}_{\mathrm{f}}=\mathrm{n}$ factor $=2$
Mole of solute $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)=[0.1 \times 0.1] \frac{1}{2}$

$$
\begin{gathered}
\text { Mass of } \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=[0.1 \times 0.1] \frac{1}{2} \times[106+18 \mathrm{x}]=1.43 \\
\Rightarrow \quad \begin{array}{l}
{[106+18 \mathrm{x}=286]} \\
18 \mathrm{x}=180 \\
\mathrm{x}=10
\end{array}
\end{gathered}
$$

13. For the following redox reactions
(i) $2 \mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \longrightarrow \mathrm{n}_{1} \mathrm{~A}+\mathrm{n}_{2} \mathrm{~B}$
(ii) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{n}_{3} \mathrm{X}+\mathrm{n}_{4} \mathrm{Y}+\mathrm{n}_{5} \mathrm{Z}$

Find the sum of coefficient $\left(n_{1}+n_{2}+n_{3}+n_{4}+n_{5}\right)$
Ans. (19.00)
Sol. (i) $2 \mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

So sum of $\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}+\mathrm{n}_{5}\right)=2+2+2+5+8=19$
14. During roasting and calcination emitted gases produce which of the following effects.
(1) Photochemical smog, acid rain
(2)Acid Rain, Global warming
(3) Photochemical smog, Global warming
(4) Acid Rain, ozone deplition

Ans. (2)
Sol. $\mathrm{CO}_{2} \& \mathrm{SO}_{2}$ are emitted during roasting and calcination and these gases produce acid rain and also increase global warming.

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
15. Identify the end product of following reaction sequence

(1)

(2)

(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(4) $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

Ans. (2)

Sol.

Major product
16. Which one of the following is most reactive towards aq. AgNO_{3}.
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Reaction with aq. AgNO_{3} of alkyl halides is an example of $\mathrm{S}_{\mathrm{N}} 1$ reaction. Rate of $\mathrm{S}_{\mathrm{N}} 1$ reaction depend upon stability of carbocation.

Ph

Most stable by +R
effect of $-\ddot{\mathrm{N}} \leq$ (amine)
17. How many chiral centres are present in Threonine.
(1) 5
(2) 2
(3) 4
(4) 3

Ans. (2)

Sol.

Threonine has two chiral carbon atom.
18. Identify the complex in which only one d orbital is used in the hybridisation.
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(2) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(3) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
(4) $\left[\mathrm{FeF}_{6}\right]^{3-}$

Ans. (1)

Sol. Complex
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \quad \mathrm{Ni}^{2+}=3 \mathrm{~d}^{8} \Rightarrow \mathrm{~d}_{\mathrm{yz}}^{2}, \mathrm{~d}_{\mathrm{zx}}^{2}, \mathrm{~d}_{\mathrm{z}^{2}}^{2}, \mathrm{~d}_{\mathrm{xy}}^{2}, \mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}^{0} \quad \mathrm{dsp}^{2}$
(2) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
$\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5} \Rightarrow \mathrm{t}_{2 \mathrm{~g}} 2,2,1, \mathrm{eg}^{0,0}$
d^{2} sp 3
(3) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
$\mathrm{Co}^{3+}=3 \mathrm{~d}^{6} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{2,2,2}, \mathrm{eg}^{0,0}$
$\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1}, \mathrm{eg}^{1,1}$
(4) $\left[\mathrm{FeF}_{6}\right]^{3-}$

Hybridisation

ng process is not endothermic ?
(1) $\mathrm{H}_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{H}_{(\mathrm{g})}^{-}$
(2) $\mathrm{Ar}_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{Ar}_{(\mathrm{g})}$
(3) $\mathrm{O}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{O}^{2-}{ }_{(\mathrm{g})}$
(4) $\mathrm{Na}_{(\mathrm{g})} \rightarrow \mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{e}^{-}$

Ans. (1)
Sol. $\quad \mathrm{H}_{(\mathrm{g})}+\mathrm{e}^{-} \xrightarrow{\text { exothermic }} \mathrm{H}^{-}{ }_{(\mathrm{g})}$

$$
\Delta \mathrm{H}_{\mathrm{eg}}=(-) \mathrm{ve}
$$

$\mathrm{O}_{(\mathrm{g})}^{-}+\mathrm{e}^{-} \xrightarrow{\text { endothermic }} \mathrm{O}^{2-}{ }_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\text {eg }}=(+) \mathrm{ve}$

20. 5 mole of an ideal gas of volume V is expanded against vacuum to make its volume 2 times, then work done by the gas is:
(1) $-\mathrm{RT}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
(2) $-\mathrm{RT} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
(3) Zero
(4) $\mathrm{Cv}\left[\mathrm{T}_{2}-\mathrm{T}_{1}\right]$

Ans. (3)
Sol. $\quad W=-P_{\text {ext }} \Delta V$
In expansion against vacuum $\mathrm{P}_{\text {ext }}=0$
So work done is zero.
21. Given
(i) $\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C} \quad \mathrm{K}_{\mathrm{eq}}(1)$
(ii) $\mathrm{B}+\mathrm{C} \rightleftharpoons \mathrm{P} \quad \mathrm{K}_{\mathrm{eq}}(2)$
then $\mathrm{K}_{\text {eq }}$ for reaction $\mathrm{A} \rightleftharpoons \mathrm{P}$ is
(1) $K_{\text {eq }}(1) \cdot K_{\text {eq }}(2)$
(2) $\frac{\mathrm{K}_{\mathrm{eq}}(1)}{\mathrm{K}_{\mathrm{eq}}(2)}$
(3) $K_{\text {eq }}(1)+K_{e q}(2)$
(4) $K_{\text {eq }}(1)-K_{e q}(2)$

Ans. (1)
Sol. On adding Reaction $1^{\text {st }}$ and Reaction $2^{\text {nd }}$ we get.

$$
A \rightleftharpoons P \quad K_{e q}=K_{\text {eq }}(1) \cdot K_{e q}(2)
$$

22. Osmotic pressure of NaCl solution is 0.1 atm and Glucose solution is 0.2 atm . If 1 L of NaCl solution and 2 L of Glucose solution is mixed at same temperature, then osmotic pressure of resulting solution is ${ }^{\prime} \mathrm{X}^{\prime} \times 10^{-3} \mathrm{~atm}$. then value of ' X ' in nearest integer is

Ans. 167
Sol. $\quad \Pi=\mathrm{i} C R T=i\left[\frac{\mathrm{n}}{\mathrm{V}}\right] \mathrm{RT}$
$\Pi_{\text {final }}=\frac{\left(\pi_{1} V_{1}\right)+\left(\pi_{2} V_{2}\right)}{V_{1}+V_{2}}$
$\Pi_{\text {final }}=\frac{(0.1 \times 1)+(0.2 \times 2)}{3}$

$$
=\frac{(0.1+0.4)}{3}=\frac{0.5}{3}=\frac{500}{3} \times 10^{-3} \mathrm{~atm}
$$

so $X=167$

