MATRIX

MAI RIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

Ans. (1)

- Sol. Acid rain is by product of activities that emit oxides of S/N by burning fossil fuels in thermal power plants.
- 6. Product of which of the following reaction is not determined by kjeldahl method.

7. A is a smallest optically active alkene which on hydrogenation produces B. Find the number of isomers including stereoisomers of the product formed on monohalogenation of B.

Ans. (4)

MATRIX

Ans. (2)

Sol. Boiling point of $H_2S < 300 \text{ K} (213 \text{ K})$ (because of H-bonding boiling point of H_2O is greater than H_2S)

MATRIX

CHEMISTRY

9. $C_{10}H_{18}O_2$ (A) on acidification with H_2SO_4 gives carboxylic acid (B) and alcohol(C). Obtained alcohol on oxidation with CrO₃ gives carboxylic acid B. Which of the following structure is not possible for $C_{10}H_{18}O_2$.

$$(1) CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

$$(2) CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

$$(3) CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}-CH_{3}$$

$$(4) None of these$$
Ans. (3)
Sol. $CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}-CH_{3}$

$$CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}-CH_{3}-CH_{3}$$

$$CH_{3}-CH_{2}-CH_{2}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}$$

$$CH_{3}-CH_{2}-CH_{2}-CH_{3$$

Sol.		NO ²⁺	NO^+	NO	NO-
	'N–O' Bond order =	2.5	3.0	2.5	2.0

Bond order \propto Bond strength

- 11. Which of the following complexes shows optical isomerism.
 - (1) $\operatorname{cis}-\left[\operatorname{Cr}(\operatorname{OX})_{2}\operatorname{Cl}_{2}\right]^{3-}$ (2) $\operatorname{trans}-\left[\operatorname{Cr}(\operatorname{OX})_{2}\operatorname{Cl}_{2}\right]^{3-}$ (3) $\operatorname{cis}-\left[\operatorname{Co}(\operatorname{NH}_{3})_{4}\operatorname{Cl}_{2}\right]^{+}$ (4) $\operatorname{trans}-\left[\operatorname{Co}(\operatorname{NH}_{3})_{4}\operatorname{Cl}_{2}\right]^{+}$

Ans. (1)

optically active

- 12. Which of the following mixture will form acidic buffer.
 - (1) 100 ml, 0.1M CH₃COOH + 200 ml, 0.1 M NaOH
 - (2) 100 ml, 0.1M HCl + 200 ml, 0.1 M CH₃ COONa
 - (3) 100 ml, 0.1 M HCl + 100 ml, 0.1 M NaOH
 - (4) 100 ml, 0.1M CH₃COOH + 100 ml, 0.2 M NaOH

Ans. (2)

Sol. Mixture - I

	CH ₃ COOH	+	$NaOH \longrightarrow$	CH ₃ COONa +	H_2O
initial	0.1 × 100		0.1×200	—	
milli moles	= 10		20		
final	10 - 10		20 - 10	10	10
	= 0		= 10		

MATRIX	MATRI)	< Comparison of the second sec			CHEMISTRY
L	Resultant solution	\Rightarrow CH ₃ COONa -	⊦ NaOH not a b	uffer	
	<u>Mixture - II</u>				
	CH ₃ COONa +	HCl→	CH ₃ COOH	+ H ₂ O	
initial	0.1×200	0.1 × 100		—	
millimo	= 20	= 10			
final	20 - 10	10-10	10	10	
	= 10	=0			
	Resultant solution \Rightarrow CH	G ₃ COOH + CH CC	ONa buffer sol	ution (W.A. + (W	V.A. + SB)Salt)
	<u>Mixture - III</u>				
	$\underbrace{\mathrm{HCl}}_{+} \underbrace{\mathrm{NaOH}}_{-} \longrightarrow \mathbb{N}$	$AaCl + H_2O$			
	buffer can't be formed usin	g these.			
	<u>Mixture - IV</u>				
	CH ₃ COOH +	NaOH ———	→ CH ₃ COONa	+ H ₂ O	
initial	0.1×100	0.2 × 100			
millimo	bles $= 10$	20			
final	10 - 10	20 - 10	10	10	
	= 0	= 10			
	Resultant solution	\Rightarrow CH ₃ COONa -	NaOH not a b	uffer	
13.	A balloon contain He gas a	at 'T' gets burst ther	it is.		
	(1) Reversible isothermal		(2) Irreversible	isothermal	
	(3) Reversible Adiabatic		(4) Irreversible	Adiabatic	
Ans.	(4)				
Sol.	Q = 0 and bursting of ballo	on with He gas in it	t is irreversible.so	process is irreve	ersible Adiabatic

14. Which has most acidic hydrogen.

(1) NC - CH₂ - CN
(2)
$$\left(CH_3 - O - C\right)_3^{CH}$$

(3) $(4) CH_3 - C = CH$

Ans. (1)

Sol. Conjugate base of $NC - CH_2 - CN$ is stable due to delocalisation with two CN groups

- 15. The Tyndall effect is observed only when following conditions are satisfied :
 - (a) The diameter of the dispersed particles is much smaller than the wavelength of the light used.
 - (b) The diameter of the dispersed particles is not much smaller than the wave length of the light used
 - (c) The refractive indices of the dispersed phase and dispersion medium are almost similar in magnitude.
 - (d) The refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.
 - (1) (b) and (d) (2) (a) and (c) (3) (b) and (c) (4) (a) and (d)
- Ans. (1)
- Sol. *The diameter of the dispersed particles is not much smaller than the wavelength of the light used
 *The intensity of scattered light depends on the difference between the refractive indice of the D.P and D.M.,
 In lyophobic colloids, this difference is appreciable and therefore the tyndal effect is quite well defined but in
 lyophilic sols the difference is very small and the tyndal effect is very weak. So, to show Tyndall effect the
 refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.
- 16. Novestrol will give which of the following reactions :

(1) Br_2/H_2O , HCl + ZnCl₂, neutral FeCl₃

(2) Br_2/H_2O , $HCl + ZnCl_2$, I_2/OH^-

- (3) alc. HCN, I_2/OH^- , HCl + ZnCl₂
- (4) alc. HCN, I₂/OH⁻, NaOCl

Ans. (1)

Sol.	H ₃ C OH H C≡CH				
	НО				
	Ethynylestradiol (novestrol) It has phenolic, alcoholic and Terminal alkyne functional group.				
17.	$\mathbf{R} - \mathbf{X} \to [\mathbf{R}^+][\mathbf{X}^-] \xrightarrow{\mathbf{N}\mathbf{u}^-} \mathbf{R} - \mathbf{N}\mathbf{u}$				
	Which statement is/are correct for this reaction?				
	(I) Polarity of solvent decreases then rate of reaction increases.				
(II) Strong nucleophile is more suitable for this reaction.(III) If R is bulky then carbocation becomes more stabe.					
					(IV) Racemisation will take place in this reaction.
	(1) Only I and II (2) Only II and IV (3) I, (3) I	, II and IV (4) Only III and IV			
Ans.	(4)				
Sol.	Above reaction is S_N 1 reaction as it proceed via formation of carbocation. Polar protic solvent is more suitable				
18.	Select true statement among following :				
	(1) 2^{nd} order reaction is always multi step reaction.				
	(2) 1 st order reaction is always single step reaction.				
(3) zero order reaction is always single step reaction.(4) zero order reaction is always multi step reaction.					
			Ans.	(4)	
Sol.	Zero order reaction is always complex reaction, so it will be multistep.				
19.	Four gases a, b, c & d have K_h values 50 kbar, 20 kl	bar, 2×10^{-3} kbar and 2 kbar respectively. Then ?			
	(1) a is more soluble in water	(2) Pressure of c in 55.5 molal solution is 1 bar			
	(3) Pressure of d in 55.5 molal solution is 250 bar	(4) Prassure of b in 55.5 molal solution is 50 bar			
Ans.	(2)				

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Sol. (i) From Henery's law

MATRIX

 $P = K_h(X)$

Higher the value of K_h, smaller will be solubility so d is more soluble.

(ii) For
$$c \Rightarrow (P)_c = (K_h)_c \cdot (X)_c = 2 \times \left[\frac{55.5}{55.5 + \frac{1000}{18}}\right] = 1$$
 bar

(iii) For d
$$\Rightarrow$$
 P_d = (K_h)_d.(X)_d = 2×10³× $\frac{1}{2}$ = 1000 bar.

(iv) For
$$b \Rightarrow (P)_b = (K_h)_b \cdot (X)_b = 20 \times \frac{1}{2} = 10$$
 bar

- 20. Conductance of NaCl and $BaSO_4$ is C_1 and C_2 at temperature T_1 , then which of the following statement is correct.
 - (1) $C_1 >> C_2$
 - (2) $C_1(T_1) > C_1(T_2)$ [where $T_2 > T_1$]
 - $(3) C_2 >> C_1$
 - (4) $C_1 > C_2$

Ans. (1)

Sol. (i) NaCl is completely soluble salt while $BaSO_4$ is sparingly soluble salt so conductance of $NaCl(C_1) \gg$ conductance of $BaSO_4(C_2)$.

(ii) On increase in temperature conductance increases.

- **21.** Find the volume strength of $8.9 \text{ M H}_2\text{O}_2$ solution.
- Ans. 99.68
- Sol. Volume strength of H_2O_2
 - $= 11.2 \times Molarity$
 - $= 11.2 \times 8.9$
 - = 99.68

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

- 22. Find % w/w of H_2O in a solution containing glucose with $X_{Glucose} = 0.1$
- Ans. 47.36
- Sol. $X_{glucose} = 0.1$

 $X_{water} = 0.9$

Let's assume total moles = 1

 $n_{glucose} = 0.1$

 $n_{water} = 0.9$

$$\% \left(\frac{w}{w}\right)_{H_{2}O} = \frac{w_{water}}{w_{solution}} \times 100$$
$$= \frac{(0.9 \times 18)}{(0.9 \times 18) + (0.1 \times 180)} \times 100$$

23. For $[Ti(H_2O)_6]^{3+}$, the absorption maximum due to d–d transition is found to be 20,300 cm⁻¹, therefore the crystal filed stabilization energy in kJ/mole is

[Given :
$$1kJ/mole = 83.7 cm^{-1}$$
]

Ans.

-97

Sol. $[Ti(H_2O)_{\delta}]^{3+} \Rightarrow Ti^{3+} = 3d^1 4s^0$

$$\Rightarrow t_{2g}^{1,0,0}, e_{g}^{0,0}$$
CFSE = [-0.4 nt_{2g} + 0.6 ne_g] Δ_{0} + n(p)
= [-0.4] 20300
= -8120 cm⁻¹

$$= \frac{-8120}{83.7} \text{ kJ/mole}$$
$$= -97 \text{ kJ/mole}$$

MATRIX

- 24. In a solid substance edge length of unit cell is 405 pm, density of solid is 10.9 gram/cm³ and molar mass of substance is 109 gram, Find radius of atom (in pm) which forms above unit cell.
- Ans. 143.16
- Sol. Formula of density $d = \frac{Z \times M}{Na \times Volume}$ [M = 109 gm, Volume = a³, a = 4.05 × 10⁻⁸ cm]

 $10.9 = \frac{Z \times 109}{6.02 \times 10^{23} \times [4.05 \times 10^{-8}]^3}$ Z = 4 So it will be fcc unit cell then 4r = $\sqrt{2}a$ r = $\frac{a}{2\sqrt{2}}$ r = $\frac{1.414 \times 405}{4}$

- = 143.1675 pm = 143.17 pm
- 25. A beam of light is made to incident on sodium metal (work function = 2.5 eV) and to stop photoelectric current, potential difference equal to E_{cell} of following cell is used.

If same light is made to incident on potassium metal (work function = 2.3 eV) and to stop photoelectric current potential difference equal to E_{cell} of same cell is used, then pH of HCl solution (if other condition remains same) is –

[Given :
$$E_{CI^{-}|AgCI|Ag}^{0} = 0.22V \& \frac{2.303RT}{F} = 0.06$$
]

- Ans. 3.33
- Sol. <u>For Sodium metal</u> (w = work function)

 $E = w + (KE)_{max} ; E_{cell}^{0} = 0.22ev \text{ (because cell in standard conditions)}$ To stop photoelectric current $(KE)_{max} = e \times V \quad (V = \text{Stopping potential})$ $V = E_{cell}^{\circ} = 0.22V$ So K.E._{max} = 0.22 eV

E = 2.5 + 0.22 = 2.72 eVFor Potassium metal: $E = w + (KE)_{max}$ $2.72 = 2.3 + (KE)_{max}$ $(KE)_{max} = 0.42 \text{ eV} = \text{e} \times \text{E}_{cell}$ $E_{cell} = 0.42 V$ Cell reaction Cathode : AgCl(s) + $e^- \rightarrow$ Ag(s) + Cl⁻(aq) Anode : $\frac{1}{2}$ H₂(g) \rightarrow H⁺(aq) + e⁻ Overall : AgCl(s) + $\frac{1}{2}$ H₂(g) \rightarrow Ag(s) + H⁺(aq) + Cl⁻(aq) $E_{cell} = E_{cell}^{0} - \frac{0.06}{1} \log[H^{+}][Cl^{-}]$ $0.42 = 0.22 - 0.06 \log [H^+]$ $0.2 = 0.06 \times pH$ pH = 3.33