JEE Main September 2020 Question Paper With Text Solution 3 September | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN SEP 2020 | 3 SEP SHIFT-2

1. The major product in the following reaction is:

Ans. (2)

Sol.

- 2. Consider the hypothetical situation where the azimuthal quantum number, l, takes values $0, 1, 2, \dots, n+1$, where n is the principal quantum number. Then, the element with atomic number:
 - (1) 6 has a 2p-valence subshell
- (2) 8 is the first noble gas
- (3) 13 has a half-filled valence subshell
- (4) 9 is the first alkali metal
- Ans. (2) (Answer given by NTA is 3)

Sol. For n = 1

value of l = 0, 1, 2

For n = 2

value of l = 0, 1, 2, 3

So, according to n+l rule the filling order of subshells will be:

1s 1p 2s 1d 2p 3s 2d 3p 4s

- (1) 1^{st} noble gas will have configuration $1s^2$ $1p^6$ so atomic number will be 8.
- (2) 1st alkali metal will have electronic configuration \Rightarrow 1s1 1p6 2s1 \Rightarrow (Z = 1)
- (3) Electronic configuration of C (Z = 6) \Rightarrow 1s² 1p⁴
- (4) Z = 13, Electronic configuration = $1s^2 1p^6 2s^2 1d^3$

So it will not have half-filled electronic configuration.

JEE Main September 2020 | 3 Sep Shift-2

3. A mixture of one mole each of H_2 , He and O_2 are enclosed in a cylinder of volume V at temperature T. If the partial pressure of H_2 is 2 atm, the total pressure of the gases in the cylinder is:

- (1) 22 atm
- (2) 14 atm
- (3) 6 atm

(4)38 atm

Ans. (3)

Sol.

$$P_{gas} = \frac{n_{gas}RT}{V}$$

as T & V constant So

 $P \alpha n$

$$P_{H_2} = P_{O_2} = P_{He} = 2$$
 atm

So,
$$P_{Total} = P_{H_2} = P_{O_2} = P_{He} = 6$$
 atm

4. The incorrect statement is:

(1) Manganate ion is green in colour and permanganate ion is purple in colour

(2) Manganate and permanganate ions are paramagnetic

(3) In manganate and permanganate ions, the π -bonding takes place by overlap of p-orbitals of oxygen and d-orbitals of manganese

(4) Manganate and permanganate ions are tetrahedral

Ans. (2)

Sol. Manganate

 MnO_4^{2-}

Paramagnetic, green in colour,

Tetrahedral & contains $p\pi$ -d π bond

Permanganate

$$MnO_4^{\Theta}$$

Diamagnetic, purple in colour,

Tetrahedral & contains $p\pi$ -d π bond

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Main September 2020 | 3 Sep Shift-2

5. Consider the following molecules and statements related to them:

$$(B) \overset{H}{\overset{O}{\overset{C}{\overset{}}{\overset{}}{\overset{}}}} \overset{O}{\overset{O}{\overset{}}{\overset{}}} \overset{O}{\overset{}}$$

- (a) (B) is more likely to be crystalline than (A)
- (b) (B) has higher boiling point than (A)
- (c) (B) dissolves more readily than (A) in water

Identify the correct option from below:

(1) (a) and (b) are true

(2) (b) and (c) are true

(3) (a) and (c) are true

(4) Only (a) is true

Ans. (1)

Sol. Due to inter molecular H-Bonding in B, than A, B is more crystalline and having more boiling point than A.

6. The d-electron configuration of $[Ru(en)_3]Cl_2$ and $[Fe(H_2O)_6]Cl_2$, respectively are:

(1) t_{2g}^6 e_g^0 and t_{2g}^4 e_g^2

(2) t_{2g}^4 e_g^2 and t_{2g}^6 e_g^0

(3) t_{2g}^6 e_g^0 and t_{2g}^6 e_g^0

(4) t_{2g}^4 e_g^2 and t_{2g}^4 e_g^2

Ans. (1)

Sol. $[Ru(en)_3]Cl_2 \Rightarrow Ru^{2+} = 4d^6 = t_{2g}^6, e_g^0$ (Low spin complex)

 $[Fe(H_2O)_6]^{2+} \Rightarrow Fe^{2+} = 3d^6 = t_{2g}^4, e_g^2$ (High spin complex)

So, correct answer is (1).

7. Complex A has a composition of $H_{12}O_6Cl_3Cr$. If the complex on treatment with conc. H_2SO_4 loses 13.5% of its original mass, the correct molecular formula of A is:

[Given: atomic mass of Cr = 52 amu and Cl = 35 amu]

(1) $[Cr(H_2O)_3Cl_3] \cdot 3H_2O$

(2)[Cr(H₂O)₅Cl]Cl₂ · H₂O

 $(3) \left[\text{Cr}(\text{H}_2\text{O})_4\text{Cl} \right] \text{Cl}_2 \cdot 2\text{H}_2\text{O}$

 $(4) [Cr(H_2O)_6]Cl_3$

Ans. (3)

JEE Main September 2020 | 3 Sep Shift-2

Sol. Conc. H₂SO₄ acts as dehydrating agent.

Molar mass of given complex = 266.5 g/mol.

On treating with conc. H₂SO₄ the mass

lost by the complex =
$$\frac{13.5}{100}$$
 (266.5) $\approx 36g$

$$= 2 \text{ moles of H}_2O$$

Formula of the complex = $[Cr(H_2O)_4Cl_2]Cl \cdot 2H_2O$

- **8.** The incorrect statement(s) among (a) –(d) regarding acid rain is (are):
 - (a) It can corrode water pipes.
 - (b) It can damage structures made up of stone.
 - (c) It cannot cause respiratory ailments in animals
 - (d) It is not harmful for trees
 - (1) (a), (c) and (d)
- (2) (c) only
- (3)(a),(b) and (d)
- (4) (c) and (d)

Ans. (4)

- Sol. (C) It causes breathing problem in human being and animals
 - (D) It is harmful for trees and plants

JEE Main September 2020 | 3 Sep Shift-2

9. Three isomers A, B and C (mol.formula $C_8H_{11}N$) give the following results:

A and C
$$\xrightarrow{\text{Diazotization}}$$
 P + Q $\xrightarrow{\text{(i)Hydrolysis}}$ R (product of A) + S (product of C)

R has lower boiling point than S

 $B \xrightarrow{C_6H_5SO_2Cl}$ alkali-insoluble product

A, B and C, respectively are:

$$(1) \underbrace{\bigcap_{NH_2}^{CH_2CH_3}} \cdot \underbrace{\bigcap_{CH_2NHCH_3}^{CH_2NHCH_3}} \cdot \underbrace{\bigcap_{CH_2CH_3}^{NH_2}} \cdot \underbrace{\bigcap_{CH_2NHCH_3}^{CH_2NHCH_3}} \cdot \underbrace{\bigcap_{CH_2CH_3}^{CH_2NHCH_3}} \cdot \underbrace{\bigcap_{CH_2CH_3}^{NH_2}} \cdot \underbrace{\bigcap_{CH_2CH_3}^{NH$$

Ans. (2)

MATRIX JEE ACADEMY

JEE Main September 2020 | 3 Sep Shift-2

Sol.
$$\overbrace{(A)}^{NH_2} \underbrace{\frac{HNO_2}{0^{\circ}C-5^{\circ}C}} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}^{+}}_{CH_2-CH_3} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{KMnO_4/H^+}}_{OH} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{CH_2-CH_3}}_{COOH} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{CH_2-CH_3}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{CH_2-CH_3}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{CH_2-CH_3}}_{COOH} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{CH_2-CH_3}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{(R)}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{(R)}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{(R)}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{(R)}}_{(R)}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{(R)}}_{(R)}}_{(R)} \underbrace{\underbrace{\frac{Hydrolysis}{CH_2-CH_3}}_{(R)}}_{(R)}}_{(R)}$$

- **10.** Among the statements(I–IV), the correct ones are :
 - (I) Be has smaller atomic radius compared to Mg.
 - (II) Be has higher ionization enthalpy than Al.
 - (III) Charge/radius ratio of Be is greater than that of Al.
 - (IV) Both Be and Al form mainly covalent compounds.
 - $(1) (I), (II) \text{ and } (IV) \qquad (2) (I), (II) \text{ and } (III) \qquad (3) (II), (III) \text{ and } (IV) \qquad (4) (I), (III), \text{ and } (IV)$

MATRIX JEE ACADEMY

JEE Main September 2020 | 3 Sep Shift-2

Ans. (1)

Sol. Charge / radius ratio of Be and Al is same because of diagonal relationship. Remaining statements are correct.

11. For the reaction $2A + 3B + \frac{3}{2}C \rightarrow 3P$, which statement is correct?

$$(1) \frac{dn_A}{dt} = \frac{dn_B}{dt} = \frac{dn_C}{dt}$$

(2)
$$\frac{dn_A}{dt} = \frac{3}{2} \frac{dn_B}{dt} = \frac{3}{4} \frac{dn_C}{dt}$$

(3)
$$\frac{dn_A}{dt} = \frac{2}{3} \frac{dn_B}{dt} = \frac{3}{4} \frac{dn_C}{dt}$$

(4)
$$\frac{dn_A}{dt} = \frac{2}{3} \frac{dn_B}{dt} = \frac{4}{3} \frac{dn_C}{dt}$$

Ans. (4)

Sol. For a given reaction, rate = $-\frac{1}{2}\frac{dn_A}{dt} = -\frac{1}{3}\frac{dn_B}{dt} = -\frac{2}{3}\frac{dn_C}{dt}$

rate =
$$\frac{dn_A}{dt}$$
 = $-\frac{2}{3}\frac{dn_B}{dt}$ = $\frac{4}{3}\frac{dn_C}{dt}$

12. An ionic micelle is formed on the addition of:

(1) Sodium stearate to pure toluene

$$(2) \underset{H_3C}{\overset{\bigoplus}{\bigvee}} \underset{CH_3}{\overset{\bigoplus}{\bigvee}} SO_4$$

(3) liquid diethyl ether to aqueous NaCl solution

excess water to liquid

$$(4) \bigvee_{H_3C} \bigvee_{N} \bigoplus_{CH_3} PF_6^{\ominus}$$

Ans. (2)

Sol.
$$H_3C$$
 CH_3

Due to presence of hydrophobic cahin it forms micelle.

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email:smd@matrixacademy.co.in

JEE Main September 2020 | 3 Sep Shift-2

13. 100 mL of 0.1 M HCl is taken in a beaker and to it 100 mL of 0.1 M NaOH is added in steps of 2 mL and the pH is continuously measured. Which of the following graphs correctly depicts the change in pH?

Ans. (2)

Sol. At equivalence point pH is 7 and pH increases with addition of NaOH so correct graph is (2).

14. Consider the following reaction:

$$\begin{array}{c} d \\ \stackrel{\bigcirc}{\mathbb{H}} O \\ \\ \stackrel{\bigcirc}{\mathbb{H}} O \\ \\ \stackrel{\bigcirc}{\mathbb{H}} \\ \\ O \stackrel{\bigcirc}{\mathbb{H}} \\ \\ \\ \begin{array}{c} Chromic \\ anhydride \\ \end{array}} \\ \stackrel{^{\circ}P}{} \\ \end{array}$$

The product 'P' gives positive ceric ammonium nitrate test. This is because of the presence of which of these – OH group(s)?

(1) (b) and (d)

(2) (c) and (d)

(3) (d) only

(4) (b) only

Ans. (4)

Sol.

3° Alcohol gives Red colour with ceric ammonium nitrate

MATRIX JEE ACADEMY

JEE Main September 2020 | 3 Sep Shift-2

- 15. The five successive ionzation enthalphies of an element are 800, 2427, 3658, 25024 and 32824 kJ mol⁻¹. The number of valence electrons in the element is:
 - (1)2
- (2)3
- (3)4

(4)5

Ans. (2)

- Sol. As difference in 3rd and 4th ionisation energies is high so atom contains 3 valence electrons.
- **16.** The compound A in the following reactions is:

$$A \xrightarrow{\text{(i) } CH_3MgBr/H_2O}$$

$$\xrightarrow{\text{(ii) } Conc.H_2SO_4/\Delta}$$

$$B = \frac{(i) O_3}{(ii) Zn/H_2O} \rightarrow C + D$$

$$C \xrightarrow{\text{(i) Conc.KOH}} COO^{\ominus}K^{+} + COO^{\ominus}K^{+} + CH_{2}OH$$

$$D \xrightarrow{Ba(OH)_2} H_3C-C=C-C-CH_3$$

(2)
$$_{\text{C}_{6}\text{H}_{5}\text{-C-CH}_{3}}^{\text{O}}$$

(4)
$$C_{6}H_{5}-CH_{2}-C-CH_{3}$$

Ans. (4)

Sol.

$$+ CH_3-C-CH_3 \xrightarrow{Ba(OH)_2/\Delta} CH_3-C=CH-C-CH_3$$
(C) (D)
$$+ CH_3-C=CH-C-CH_3$$

$$+ CH_3-C-CH_3$$

$$+ CH$$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE Main September 2020 | 3 Sep Shift-2

17. The decreasing order of reactivity of the following compounds towards nucleophilic substitution $(S_N 2)$ is:

$$CH_2CI$$
 CH_2CI
 NO_2
 NO_2
 CH_2CI
 NO_2
 CH_2CI

$$\begin{array}{c|c} CH_2CI & CH_2CI \\ \hline \\ NO_2 & O_2N \\ \hline \\ NO_2 & (III) & (IV) \\ \end{array}$$

Ans. (4

Sol. $S_N 2$ reaction depend upon -I, -M effect on substrate. On increase -I, -M, effect rate of $S_N 2$ reaction increase.

18. The strengths of 5.6 volume hydrogen peroxide (of density 1 g/mL) in terms of mass percentage and molarity (M), respectively, are: (Take molar mass of hydrogen peroxide as 34 g/mol)

Ans. (3)

Sol. For H_2O_2

Molarity =
$$\frac{\text{Volume strength}}{11.2} = \frac{5.6}{11.2} = 0.5 \,\text{M}$$

$$Molarity = \frac{\%(w/w) \times 10 \times d}{GMM}$$

$$0.5 = \frac{\%(w/w) \times 10 \times 1}{34}$$

$$\%(\text{w/w}) = \frac{0.5 \times 34}{10} = 1.7$$

JEE Main September 2020 | 3 Sep Shift-2

19. Match the following drugs with their therapeutic actions:

(i) Ranitidine

(a) Antidepressant

(ii) Nardil(Phenelzine)

(b) Antibiotic

(iii) Chloramphenicol

(c) Antihistamine

(iv) Dimetane

(d) Antacid

(Brompheniramine)

(e) Analgesic

(1) (i)-(d); (ii)-(c); (iii)-(a); (iv)-(e)

(2) (i)-(a); (ii)-(c); (iii)-(b); (iv)-(e)

(3)(i)-(e);(ii)-(a);(iii)-(c);(iv)-(d)

(4) (i)-(d); (ii)-(a); (iii)-(b); (iv)-(c)

Ans. (4)

Sol. Phenelzine (Nardil)

$$O_{2}N \xrightarrow{\text{NHCOCHCl}_{2}} O_{2}N \xrightarrow{\text{CH}-\text{CH}-\text{CH}_{2}\text{OH}} Antibiotics}$$

Chloramphenicol

$$\xrightarrow{N} Antihistamine$$

$$Br$$

Brompheniramine (Dimetapp, Dimetane)

MATRIX JEE ACADEMY

JEE Main September 2020 | 3 Sep Shift-2

20. The increasing order of the reactivity of the following compounds in nucleophilic addition reaction is:

Propanal, Benzaldehyde, Propanone, Butanone

- (1) Butanone < Propanone < Benzaldehyde < Propanal
- (2) Benzaldehyde < Butanone < Propanone < Propanal
- (3) Propanal < Propanone < Butanone < Benzaldehyde
- (4) Benzaldehyde < Propanal < Propanone < Butanone

Ans. (1)

Sol. Rate of Nucleophilic addition reaction $\alpha - I$, -M on substate

1 > 4 > 2 > 3

21. The number of C = O groups present in a tripeptide Asp-Glu-Lys is _____.

Ans. 5

Sol. Asp-Glu-Lys tripeptide is:

No. of
$$C = O$$
 group = 5

JEE Main September 2020 | 3 Sep Shift-2

22. 6.023×10^{22} molecules are present in 10 g of a substance'x'. The molarity of a solution containing 5 g of substance 'x' in 2 L solution is $\times 10^{-3}$.

Ans. 25

Sol. Number of mole of $X = \frac{6.022 \times 10^{22}}{6.022 \times 10^{23}} = \frac{10}{\text{Molar mass of } X}$

So molar mass of X = 100g

Molarity =
$$\frac{5}{100 \times 2}$$
 = 0.025M

Ans. = 0.025 M

$$M = 25 \times 10^{-3} = P \times 10^{-3}$$

So,
$$P = 25$$

23. An acidic solution of dichromate is electrolyzed for 8 minutes using 2A current. As per the following equation $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ The amount of Cr^{3+} obtained was 0.104 g. The efficiency of the process(in%) is (Take: F = 96000 C, At. mass of chromium = 52) _____.

Ans. 60

Sol. Charge (q) = it = $2 \times 8 \times 60 = 960 \text{ C}$

$$\frac{960}{96000} = 0.01F$$

$$Cr_{27}^{2^{-}} + 14H^{+} + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_{2}O$$

0.01F
$$\frac{1}{3} \times 0.01$$
 mole

Theoritical mass of
$$Cr^{3+} = \frac{1}{3} \times \frac{600}{96000} \times 52 = 0.173 g$$

So, efficiency =
$$\frac{W_{actual}}{W_{Theoritial}} \times 100 = \frac{0.104}{0.173} \times 100 = 60\%$$

JEE Main September 2020 | 3 Sep Shift-2

- **24.** The volume (in mL) of 0.1 N NaOH required to neutralise 10 mL of 0.1 N phosphinic acid is . .
- Ans. 10
- Sol. Phosphinic acid is hypo phosphorous acid (H₃PO₂).

$$NaOH + H_3PO_2 \longrightarrow NaH_2PO_2 + H_2O$$

For neutrization

$$(N_1V_1)_{acid} = (N_2V_2)_{base}$$

$$0.1 \times 10 = 0.1 \times (V_{mL})_{NaOH}$$

$$V_{NaOH} = 10 \text{ mL}$$

- 25. If 250 cm³ of an aqueous solution containing 0.73 g of a protein A is isotonic with one litre of another aqueous solution containing 1.65 g of a protein B, at 298 K, the ratio of the molecular masses of A and B is ______ ×10⁻² (to the nearest integer).
- Ans. 177
- Sol. For isotonic solution

$$i_1C_1 = i_2C_2$$

$$\{For protein i = 1\}$$

$$C_1 = C_2$$

$$\Rightarrow \frac{0.73 \times 1000}{M_A \times 250} = \frac{1.65}{M_B \times 1}$$

$$\frac{M_A}{M_B} = \frac{0.73 \times 4}{1.65} = 1.77 = 177 \times 10^{-2}$$