KVPY 2019-20 EXAM PAPER

ONLINE

Date : 03/11/2019

Time : 180 Minutes

Max. Marks : 100

KVPY 2019-20

Piprali Road, Sikar Phone : 01572-241911, 242911 Mob. No. : 97832-62999 Website : www.matrixhighschool.org 1. 1. Let ABC be an equilateral triangle with side length a. Let R and r denote the radii of the circumcircle and the incircle of triangle ABC respectively. Then, as a function of a, the ratio $\frac{R}{r}$.

(A) strictly increases

(B) strictly decreases

(C) remains constant

(D) strictly increases for a < 1 and strictly decreases for a > 1

Ans. C

Sol.

2. Let b be a non-zero real number. Suppose the quadratic equation $2x^2 + bx + 1b = \frac{1}{b}0$ has two distinct

real roots. Then

(A) $b + \frac{1}{b} > \frac{5}{2}$ (B) $b + \frac{1}{b} < \frac{5}{2}$ (C) $b^2 - 3b > -2$ (D) $b^2 + \frac{1}{b^2} > 4$

Ans. C

Sol.

3. 3. Let $p(x) = x^2 + ax + b$ have two distinct real roots, where a, b are real numbers. Define $g(x) = p(x^3)$ for all real numbers x. Then which of the following statements are true ?

I. g has exactly two distinct real roots

II. g can have more than two distinct real roots

III. There exists a real number a such that $g(x) \ge \alpha$ for all real x

(A) Only I (B) Only I and III

(C) Only II (D) Only II and III

Ans. B

Sol.

4. Let a_n , $n \ge 1$, be an arithmetic progression with first term 2 and common difference 4. Let M_n be the average

of the first n ter	ms. Then the sum $\sum_{n=1}^{10} M_n$	ı İS	
(A) 110	(B) 335	(C) 770	(D) 1100

Ans.

А

А

Sol.

5. In a triangle ABC, $\angle BAC = 90^{\circ}$; AD is the altitude from A on to BC. Draw DE perpendicular to AC and DF perpendicular to AB. Suppose AB = 15 and BC = 25. Then the length of EF is

(A) 12 (B) 10 (C) $5\sqrt{3}$ (D) $5\sqrt{5}$

Ans.

Sol.

6.	6. The sides a, b, c of a triangle satisfy the relations $c^2 = 2ab$ and $a^2 + c^2 = 3b^2$. Then the measure of $\angle BAC$, in degrees, is				
			(C) (0)	(\mathbf{D}) 00	
	(A) 30	(B) 45	(C) 60	(D) 90	
Ans.	В				
Sol.					
7.	1	C	C	it c is written after the last digit of N,	
	-	r is divisible by c. The su	-		
	(A) 9	(B) 18	(C) 27	(D) 36	
Ans.	А				
Sol.					
8.	Let x_1, x_2, \dots, x_{11}	be 11 distinct positive in	tegers. If we replace the l	largest of these integers by the median	
	of the other 10 integ	ers, then			
	(A) The median rem	ains the same	(B) The mean increas	ses	
	(C) The median dec	reases	(D) The mean remain	ns the same	
Ans.	С				
Sol.					
9.	The number of cubi	c polynomials P(x) satis	sfying $P(1) = 2, P(2) = 4,$	P(3) = 6, P(4) = 8 is	
	(A) 0		(B) 1		
	(C) more than one b	ut finitely many	(D) infinitely many		
Ans.	А				
Sol.					
10.	A two-digit number	\overline{ab} is called almost prim	e if one obtains a two-dig	git prime number by changing at most	
			- Y	because 13 is a prime number). Then	
		t prime two-digit number	-	1 /	
	(A) 56	(B) 75	(C) 87	(D) 90	
Ans.	D				
Sol.					
11.	Let Phe an interior	point of a convex quadr	ilateral ABCD and K-L	, M, N be the midpoints of AB, BC,	
11.				Area(PMDN) = 41, then rea(PLCM)	
		$19. \Pi AICa(I KAN) = 23,$	Aica(1 LDK) = 50, and	Area $(1 \text{ WDN}) = 41$, then rea (1 LCW)	
	is $(\Lambda) 20$	(\mathbf{D}) 2 0	(C) 52	(\mathbf{D}) 54	
	(A) 20	(B) 29	(C) 52	(D) 54	
Ans.	С				
Sol.					

12.	The number of non-negative integer solutions of the equations $6x + 4y + z = 200$ and $x + y + z = 100$ is				
	(A) 3	(B) 5	(C) 7	(D) Infinite	
Ans.	С				
Sol.					
13.	Let $N_1 = 2^{55} + 1$ and	$N_2 = 165$. Then			
	(A) N_1 and N_2 are co	prime			
	(B) The HCF (Highe	est Common Factor) of	N_1 and N_2 is 55		
	(C) The HCF of N_1 a	and N_2 is 11			
	(D) The HCF of N_1 a	and N_2 is $_{33}$			
Ans.	D				
Sol.					
14.	Let $l > 0$ be a real number of $l > 0$ be a real number	mber, C denote a circle	with circumference l, and	d T denote a triangle with perimeter <i>l</i> .	
	Then				
	(A) given any positiv	ve real number a, we car	n choose C and T as abov	e such that the ratio $\frac{\text{Area}(C)}{\text{Area}(T)}$ is	
	greater than α .				
	(B) given any positiv	ve real number α , we can	n choose C and T as abov	ve such that the ratio	
	$\frac{\text{Area}(\text{C})}{\text{Area}(\text{T})}$ is less than	ıa.			
	(C) given any C and	T as above, the ratio Are	ea $\frac{\text{Area}(\text{C})}{\text{Area}(\text{T})}$ is independ	ent of C and T	
	(D) there exist real nu	umbers a and b such tha	t for any circle C and tria	ngle T as above, we must have	
	$a < \frac{Area(C)}{Area(T)} < b.$				
Ans.	Α				
Sol.					
15.	The number of three	digit numbers \overline{abc} such	that the arithmetic mean	of b and c and the square of their	
	geometric mean are e	equal is-			
	(A) 9	(B) 18	(C) 36	(D) 54	
Ans. Sol.	b				
16.	Various optical proce	sses are involved in the	formation of a rainbow. W	Which of the following provides the	
	correct order in time	in which these processe	s occur ?		
	(A) Refraction, total i	nternal reflection, refract	tion		
	$(\mathbf{D}) = (1, $				

(B) Total internal reflection, refraction, total internal reflection

(C) Total internal reflection, refraction, refraction

(D) Refraction, total internal reflection, total internal reflection.

Ans. A

- Sol.
- A specially designed Vernier calliper has the main scale least count of 1 mm. On the Vernier scale there are 10 equal divisions and they match with 11 main scale divisions. Then, the least count of the Vernier calliper is (A) 0.1 mm
 (B) 0.909 mm
 (C) 1.1 mm
 (D) 0.09 mm
- Ans. A
- 18. A steel ball is dropped in a viscous liquid. The distance of the steel ball from the top of the liquid is shown below. The terminal velocity of the ball is closest to :

(A) 0.26 m/s (B) 0.33 m/s (C) 0.45 m/s (D) 0.21 m/s

Sol.

19. A student in a town in India, where the price per unit (1 unit = 1 kW-hr) of electricity is Rs.5.00, purchases a 1 kVA UPS (uninterrupted power supply) battery. A day before the exam, 10 friends arrive to the student's home with their laptops and all connect their laptops to the UPS. Assume that each laptop has a constant power requirement of 90 W. Consider the following statements

I. All the 10 laptops can be powered by the UPS if connected directly.

II. All the 10 laptops can be powered if connected using an extension box with a 3A fuse.

III. If all the 10 friends use the laptop for 5 hours, then the cost of the consumed electricity is about Rs. 22.50.

Select the correct option with the true statements.

(A) I only	(B) I and II only
------------	-------------------

(C) I and III only (D) II and III only

Ans. C

Sol.

Frosted glass is widely used for translucent windows. The region where a transparent adhesive tape is stuck over the frosted glass becomes transparent. The most reasonable explanation for this is
 (A) diffusion of adhesive glue into glass

Ans. B

(B) chemical reaction at adhesive tape-glass interface

(C) refractive index of adhesive glue is close to that of glass

(D) adhesive tape is more transparent than glass

Ans. C

Sol.

21. Consider two equivalent, triangular hollow prisms A and B made of thin glass plates and arranged with negligible spacing as shown in the figure. A beam of white light is incident on prism A from the left. Given that the refractive index of water is inversely related to temperature, the beam to the right of prism B would NOT appear white if A B White light.

(A) both prisms are filled with hot water (70°C)

(B) both prisms are filled with cold water (7°C)

(C) both prisms are empty

(D) prism A is filled with hot water (70°C) and prism B with cold water (7°C)

Ans. D

Sol.

22. A ball is moving uniformly in a circular path of radius 1m with a time period of 1.5s. If the ball is suddenly stopped at t = 8.3 s, the magnitude of the displacement of the ball with respect to its position at t = 0 s is closest to-

(A) 1 m (B) 33 m (C) 3 m (D) 2 m

Ans. D

Sol.

23. A particle slides from the top of a smooth hemispherical surface of radius R which is fixed on a horizontal surface. If it separates from the hemisphere at a height h from the horizontal surface then the speed of the particle is

(A) $\sqrt{(2g(R-h))}$ (B) $\sqrt{(2g(R+h))}$ (C) $\sqrt{2gR}$ (D) $\sqrt{2gh}$

Ans. A

Sol.

24. The nuclear radius is given by $R = r_0 A^{1/3}$, where r_0 is constant and A is the atomic mass number. Then.

(A) The nuclear mass density of U^{238} is twice that of Sn^{119}

(B) The nuclear mass density of U^{238} is thrice that of Sn¹¹⁹

(C) The nuclear mass density of U^{238} is the same as that of Sn¹¹⁹

Ans. C

Sol.

25. The electrostatic energy of a nucleus of charge Ze is equal to kZ^2e^2/R , where k is a constant and R is the nuclear radius. The nucleus divides into two daughter nuclei of charges Ze/² and equal radii. The change in electrostatic energy in the process when they are far apart is

(A) $0.375kZ^2e^2/R$ (B) $0.125kZ^2e^2/R$ (C) kZ^2e^2/R (D) $0.5kZ^2e^2/R$

Ans. A

Sol.

26. Two masses M_1 and M_2 carry positive charges Q_1 and Q_2 , respectively. They are dropped to the floor in a laboratory setup from the same height where there is a constant electric field vertically upwards. M_1 hits the floor before M_2 . Then.

(A) $Q_1 > Q_2$ (B) $Q_1 < Q_2$ (C) $M_1Q_1 > M_2Q_2$ (D) $M_1Q_2 > M_2Q_1$

Ans. D

Sol.

27. Which one of the following schematic graphs best represents the variation of PV (in Joules) versus T (in Kelvin) of one mole of an ideal gas? (The dotted line represents PV = T).

Graph

Ans.

А

Sol.

28. Mumbai needs 1.4×10^{12} litres of water annually. Its effective surface area is 600 km² and it receives an average rainfall of 2.4 m annually. If 10% of this rain water is conserved it will meet approximately

(A) 1% of Mumbai's water needs

(B) 10% of Mumbai's water needs

(C) 50% of Mumbai's water needs

(D) 100% of Mumbai's water needs

Ans. B

Sol.

29. A mass M moving with a certain speed V collides elastically with another stationary mass m. After the collision the masses M and m move with speeds V' and n respectively. All motion is in one dimension. Then

(A) V = V' + n (B) V' = V + n (C) V' = (V + n)/2 (D) n = V + V'

Ans. D

30.	Four rays, 1, 2, 3 and 4 are incident normally on the face PQ of an isosceles prism PQR with apex angle					
	$\angle Q = 120^{\circ}$. The refractive indices of the material of the prism for the above rays 1, 2, 3 and 4 are 1.85,					
	1.95, 2.05 and 2.15, respectively and the surrounding medium is air. Then the rays emerging from the face					
	QR are					
	(A) 4 only	(B) 1 and 2 only	(C) 3 and 4 only	(D) 1, 2, 3 and 4		
Ans.	С					
Sol.						
31.	The hybridizations o	f N, C and O shown in th	e following compound	N = C = O respectively, are		
	(A) sp^2 , sp , sp^2	(B) sp^2 , sp^2 , sp^2	(C) sp ² , sp, sp	(D) sp, sp, sp^2		
Ans.	А					
Sol.						
32.	The following compo	ounds are.				
	(A) geometrical isom	ers	(B) positional isomers			
	(C) optical isomers		(D) functional group is	somers		
Ans.	D					
Sol.						
33.	The major product of	the following reaction.				
	Br <u>1.ex</u>	cess alc.KOH				
	Br Br	2. NaNH ₂				
	Ph	3.H ₃ O ⁺				
		Ĥ	Br	Br		
		(B) Ph	(C) Ph	(D) Ph		
	(A) Ph H	(B) PII ⁻ Br	Br			
Ans.	A					
Sol.		11 . 1				
34.	IUPAC name of the f	ollowing compound				
			O II			
			\downarrow			
		НС) ~			

(A) 1-hydroxycyclohex-4-en-3-one

(B) 1-hydroxycyclohex-3-en-5-one

	(C) 3-hydroxycyclohex-5-en-1-one					
	(D) 5-hydroxycyclohex-2-en-1-one					
Ans.	D					
Sol.						
35.	In water gas shift reac	tion, hydrogen gas is pro	oduced from the reaction	of steam with.		
	(A) methane	(B) coke	(C) carbon monoxide	(D) carbon dioxide		
Ans.	С					
Sol.						
36.	Treatment with lime of	can remove hardness of v	vater caused by.			
	(A) CaCl_2	(B) CaSO ₄	(C) $Ca(HCO_3)_2$	(D) CaCO ₃		
Ans.	С					
Sol.						
37.	The most polarizable i	ion among the following	is.			
	(A) F [_]	(B) I⁻	(C) Na ⁺	(D) Cl-		
Ans.	В					
Sol.						
38.	For a multi-electron at	tom, the highest energy le	evel among the following	, is		
	(A) $n = 5, l = 0, m =$	0, $s = +\frac{1}{2}$	(B) $n = 4, l = 2, m = 0$), $s = +\frac{1}{2}$		
	(C) $n = 4, l = 1, m =$	0, s = $+\frac{1}{2}$	(D) $n = 5, l = 1, m = 0$	$h_{\rm s} = +\frac{1}{2}$		
Ans.	D					
Sol.						
39.	The oxide which is ne	either acidic nor basic is.				
	$(A)As_2O_3$	(B) Sb_4O_{10}	(C) N ₂ O	(D) Na ₂ O		
Ans.	С					
Sol.						
40.	The element whose sa	alts cannot be detected b	y flame test is.			
	(A) Mg	(B) Na	(C) Cu	(D) Sr		
Ans.	А					
Sol.						
S0I.						

41. The plot of concentration of a reactant vs. time for a chemical reaction is shown below concentration

Ans.	(D) entropy change o	f the system plus surrour	nding must be positive	
Sol.				
46.	Which one of the foll	owing is a CORRECT s	tatement about primate ev	volution?
	(A) Chimpanzees and	l gorillas evolved from n	nacaques	
	(B) Humans and chim	npanzees evolved from g	orillas	
	(C) Humans, chimpar	nzees and gorillas evolve	ed from a common ances	tor
	(D) Humans and goril	llas evolved from chimpa	anzees	
Ans.	С			
Sol.				
47.	The crypts of Lieberk	whn are found in which	one of the following parts	s of the human digestive tract?
	(A) Oesophagus	(B) Small intestine	(C) Stomach	(D) Rectum
Ans.	В			
Sol.				
48.	Removal of the pance	reas impairs the breakdo	wn of	
	(A) lipids and carboh	ydrates only	(B) lipids and proteins	only
	(C) lipids, proteins ar	nd carbohydrates	(D) proteins and carbo	ohydrates only
	(A)	(B)	(C)	(D)
Ans.	С			
Sol.				
49.	Microscopic examina	ation of a blood smear re	veals an abnormal increa	se in the number of granular cells with
	multiple nuclear lobe	s. Which one of the follo	wing cell types has increa	ased in number?
	(A) Lymphocytes	(B) Monocytes	(C) Neutrophils	(D) Thrombocytes
Ans.	С			
Sol.				
50.	Which one of the foll	owing genetic phenome	ena is represented by the b	blood group AB?
	(A) Codominance	(B) Dominance	(C) Overdominance	(D) Semidominance
Ans.	Α			
Sol.				
51.	The mode of speciation	on mediated by geograp	hical isolation is referred	to as
	(A) adaptive radiation	1	(B) allopatric speciatio	on
	(C) parapatric speciat	tion	(D) sympatric speciati	on
Ans.	В			
Sol.				

52.	Which one of the following metabolic conversions requires oxygen?					
	(A) Glucose to pyr	uvate	(B) Glucose to CO	D_2 and ethanol		
	(C) Glucose to lact	ate	(D) Glucose to C	O_2 and H_2O		
Ans.	D					
Sol.						
53.	Where are the prox	imal and distal convolute	ed tubules located with	in the human body?		
	(A)Adrenal cortex		(B)Adrenal medul	lla		
	(C) Renal cortex		(D) Renal medulla			
Ans.	С					
Sol.						
54.	In a diploid organis	sm, when the locus X is in	nactivated, transcriptio	on of the locus Y is triggered. Based on this		
	observation, which one the following statements is CORRECT?					
	(A) X is dominant	over Y	(B) X is epistatic t	to Y		
	(C) Y is dominant of	over X	(D) Y is epistatic t	o X		
Ans.	D					
Sol.						
55.	Which one of the fo	ollowing sequences repre	esent the CORRECT ta	xonomical hierarchy?		
	(A) Species, genus	, family, order	(B) Order, genus,	family, species		
	(C) Species, order,	genus, family	(D) Species, genus	s, order, family		
Ans.	А					
Sol.						
56.	Which one of the fo	ollowing organs is NOT	a site for the productio	n of white blood cells?		
	(A) Bone marrow	(B) Kidney	(C) Liver	(D) Spleen		
Ans.	В					
Sol.						
57.	Which one of the fo	ollowing anatomical struc	tures is involved in gut	tation?		
	(A) Cuticle	(B) Hydathodes	(C) Lenticels	(D) Stomata		
Ans.	В					
Sol.						
58.	Which one of the fe	ollowing parts of the eye	is affected in cataract '	?		
	(A) Cornea	(B) Conjunctiva	(C) Retina	(D) Lens		
Ans.	D					
Sol.						
59.	Which one of the fo	ollowing organisms is a b	ryophyte ?			

	(A) Liverwort	(B) Volvox	(C) Chlamydomonas	(D) Fern
Ans.	А			
Sol.				
60.	During oogenesis in m	nammals, the second mei	otic division occurs.	
	(A) before fertilisation	L	(B) after implantation	
	(C) before ovulation		(D) after fertilisation	
Ans.	D			
Sol.				
61.	Let a,b,c,d be distinc -6b = 0. then b + d is		a,b are roots of $x^2 - 5cx$	$-6d = 0$, and c,d are roots of $x^2 - 5ax$
	(A) 180	(B) 162	(C) 144	(D) 126
Ans.	С			
Sol.				
62.	Let $S = \{1, 2, 3,, 10\}$	0}. Suppose b and c are	chosen at random from	the set S. The probability that $4x^2 +$
	bx + c has equal roots	sis		
	(A) 0.001	(B) 0.004	(C) 0.007	(D) 0.01
Ans.	А			
Sol.				
63.	Let \mathbb{N} be the set of point of \mathbb{P}^{n}	ositive integers. For all	$n \in \mathbb{N}$, let and $f_n = (n + n)$	$1)^{1/3} - n^{1/3}.$
	Then $A = \left\{ n \in \mathbb{N} : f_n \right\}$	$_{+1} < \frac{1}{3(n+1)^{2/3}} < f_n \bigg\}$		
	$(A)A = \mathbb{N}$			
	(B) A is a finite set	ofAin ℕ is nonempty, b	ut finite	
		nent in \mathbb{N} are both infini		
Ans.	A			
Sol.				
64.	A prime number p is	called special if there ex	xist primes p_1, p_2, p_3, p_4	such that $p = p_1 + p_2 = p_3 - p_4$
	The number of special			
	(A) 0	(B) 1	(C) more than one fini	te (D) infinite
Ans.	В			
Sol.				
65.	Let ABC be a triangle	e in which AB = BC. Le	t X be a point on AB suc	ch that $AX : XB = AB : AX$. If $AC =$
	AX, then the measure	of∠ABC equals		
	(A) 18°	(B) 36°	(C) 54°	(D) 72°
Ans.	В			

Sol.

66. A water-proof laser pointer of length 10 cm placed in a water tank rotates about a horizontal axis passing through its center of mass in a vertical plane as shown in the figure. The time period of rotation is 60 s. Assuming the water to be still and no reflections from the surface of the tank, the duration for which the light beam excapes the tank in one time period is close to (Refractive index of water = 1.33)

67. In an hour-glass approximately 100 grains of sand fall per second (starting from rest), and it takes 2 sec for each sand particle to reach the bottom of the hour-glass. If the average mass of each sand particle is 0.2 g then the average force exerted by the falling sand on the bottom of the hour-glass is close to

(A) 0.4 N	(B) 0.8 N	(C) 1.2 N	(D) 1.6 N

Ans. A

Sol.

68. A student uses the resistance of a known resistor (1Ω) to calibrate a voltmeter and an ammeter using the circuits shown below. The student measures the ratio of the voltage to current to be $1 \times 10^3 \Omega$ in circuit (a) and 0.999 Ω in circuit (b). From these measurements, the resistances (in Ω) of the voltmeter and ammeter are found to be close to:

Ans. B

Sol.

69. A hot air balloon with a payload rises in the air. Assume that the ballon is spherical in shape with diameter of

	11.7 m and the mass of the balloon and the payload (without the hot air inside) is 210 kg. Temperature and pressue of outside air are 27 °C and 1atm = 10^5 N/m ² respectively. Molar mass of dry air is 30 g. The temperature of the hot air inside is close to, [The gas constant R = 8.31 J/K/mol]						
	(A) $27 ^{\circ}\text{C}$ (B) $52 ^{\circ}\text{C}$ (C) $105 ^{\circ}\text{C}$ (D) $171 ^{\circ}\text{C}$						
Ans.	C						
Sol.	C						
70.	A healthy adult of hei	oht 1 7 m has an average	e blood pressure (BP) of	100 mm of Hg. The heart is typically			
, 0.	-			3 kg/m ³ and note that 100 mm of Hg is			
	-		-	n to that in the head region is close to			
	(A) one	(B) two	(C) three	(D) four			
Ans.	C	(2)	(0)				
Sol.	0						
71.	PbO, is obtained from	1.					
	(A) the reaction of Pl		(B) thermal decompo	sition of Pb(NO ₃) ² at 200 °C			
	(C) The reaction of H			o with air at room temperature			
Ans.	C	3 4 3					
Sol.							
72.	For one mole of van d	er Waals gas, the compre	essibility factor $z \left(= \frac{PV}{RT} \right)$) volume will certainly decrease if			
	[Given: "a", "b" are st	andard parameters for v	an der Waals gas]				
	(A) "b" increases and	"a" decreases at constan	it temperature				
	(B) "b" decreases and	"a" increases at constan	t temperature				
	(C) temperature incre	ases at constant "a" and '	"b" values				
	(D) "b" increases at co	onstant "a" and tempera	ture				
Ans.	В						
Sol.							
73.	The correct statements	s among the following					
	i. $E_{2s}(H) > E_{2s}(Li) >$	$> E_{2s}(Na) > E_{2s}(K)$					
			ell with principal quantur	n number n is equal to $2n^2$			
	iii. Extra stability of ha	alf-filled subshell is due to	o smaller exchange energ	39			
	iv. Only two electrons	, irrespective of their spi	n, may exist in the same	orbital are			
	(A) i and ii	(B) ii and iii	(C) iii and iv	(D) i and iv			
Ans.	А						
Sol.							
74.	An organic compound contains 46.78% of a halogen X. When 2.00 g of this compound is heated with						

fuming HNO₃ in the presence of AgNO₃, 2.21 g AgX was formed. The halogen X is [Given: atomic weight of Ag = 108, F = 19, Cl = 35.5, Br = 80, I = 127]

(A) F (B) Cl (C) Br (D) I

Ans. C

Sol.

75. An organic compound X with molecular formula C_6H_{10} , when treated with HBr, forms a gem dibromide. The compound X upon warming with HgSO₄ and dil. H₂SO₄, produces a ketone which gives a positive iodoform test. The compound X is.

Ans. D

Sol.

76. A cell weighing 1 mg grows to double its initial mass before dividing into two daughter cells of equal mass. Assuming no death, at the end of 100 divisions what will be the ratio of the mass of the entire population of these cells to that of the mass of the Earth? Assume that mass of the Earth is 10²⁴ kg and 2¹⁰ is approximately equal to 1000.

(A)
$$10^{-28}$$
 (B) 10^{-3} (C) 1 (D) 10^{3}

- Ans. C
- Sol.
- 77. Papaya is a dioecious species with XY sexual genotype for male and XX for female. What will be the genotype of the embryos and endosperm nuclei after double fertilization?

(A) 50% ovules would have XXX endosperm and XY embryo, while the other 50% would have XXY endosperm and XX embryo

- (B) 100% ovules would have XXX endosperm and XY embryo
- (C) 100% ovules would have XXY endosperm and XX embryo
- (D) 50% ovules would have XXX endosperm and XX embryo, while the other 50% would have XXY endosperm and XY embryo

Ans. D

Sol.

78. Solid and dotted lines represent the activities of pepsin and salivary amylase enzymes of the digestive tract, respectively. Which one of the following graphs best represents their activity vs pH?

	(A) $P_{\mathbf{p}_{\mathbf{H}}}$ (B) $P_{\mathbf{p}_{\mathbf{H}}}$ (B) $P_{\mathbf{p}_{\mathbf{H}}}$ (B) $P_{\mathbf{p}_{\mathbf{H}}}$	$(C)^{V} \underbrace{\int_{1}^{V} \int_{2}^{1} \int_{pH}^{2} \int_{1}^{2} \int_{pH}^{2} \int_{pH}^{2} \int_{1}^{2} \int_{pH}^{2} \int_{pH}^{pH}^{2} \int_{pH}^{2}	(D) $(D) \xrightarrow{bit}_{1 \\ pH} \xrightarrow{5 \\ pH} 10}$
Ans.	A		
Sol.			
79.	If the gene pool of the locus X in the human ge	nome is 4, then what wo	uld be the highest possible number of
	genotypes in a large population?		
	(A) 6 (B) 8	(C) 10	(D) 16
Ans. C			
Sol.			
80.	Match the plant hormones in Column I with the	eir primary function in Co	olumn II.
	Column I	Column II	
	P. Abscisic acid	(i) Promotes disease re	esistance
	Q. Ethylene	(ii) Maintains seed dor	mancy
	R. Cytokinin	(iii) Promotes seed gerr	mination
	S. Gibberellin	(iv) Promotes fruit riper	ning
		(v) Inhibits leaf senesce	ence
	Choose the CORRECT combination		
	(A) P - iii, Q - iv, R - i, S - ii	(B) P - ii, Q - iv, R - v,	S - iii
	(C) P - v, Q - iii, R - ii, S - i	(D) P - iv, Q - ii, R - ii	i, S - v
Ans.	В		
Sol.			